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ABSTRACT
Autonomous ground vehicles have the potential to reduce the risk to Soldiers

in unfamiliar, unstructured environments. Unmanned operations in unstructured
environments require the ability to guide the vehicles from their starting position
to a target position. This paper proposes a framework to plan paths across
such unstructured environments using a priori information about the environment
as cost criteria into a multi-criteria, multi-agent path planner. The proposed
multi-criteria, multi-agent path planner uses a penalty-based A* algorithm to
plan multiple paths across the unstructured environment and uses entropy weighting
for generating weights to calculate a multi-criteria cost with distance, risk, and
soil trafficability. The paths generated by the proposed framework provide a better
overall performance across the cost criteria and can be used as waypoints to
navigate UGVs in off-road environments.
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1. INTRODUCTION
Off-road vehicles are crucial when it comes

to operations in dangerous or hard-to-reach areas.
Currently, such missions are generally carried
out by a team of human operated vehicles.
However, such off-road missions can lead to
potentially life-threatening situations, especially
when navigating an area with compromised

structures or when transporting supplies through an
unfamiliar or unfriendly zone. But with the advent of
unmanned ground vehicles (UGVs) and the ability to
carry out missions without a human driver, this risk to
human life can be reduced. A UGV can be provided
with path information (including waypoints), which
it can use to traverse the environment and complete
the mission safely.
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Path planning in unstructured environments
poses a different set of challenges from such
planning in structured, urban environments. First,
the unstructured nature of the off-road environments
means that, unlike an urban environment, where
there are well-defined road networks, an off-road
environment lacks such structures. Therefore,
barring the obstacles, the whole environment can
be used by a moving vehicle. Second, the paths
must allow the UGV to navigate the environment
safely, requiring a more thorough characterization of
the environment than typically associated with road
segments in existing routing algorithms. This paper
addresses the above-mentioned concerns associated
with off-road UGV path planning.

The problem context for this paper is a team
of UGVs that starts from a depot and splits into
sub-teams along multiple paths to arrive at the
same target point (destination). This split could be
due to different vehicle capabilities, spreading risk
exposure, etc. The paths must be as disjoint as
possible with an option to converge in the presence
of an environmental constraint like a bridge or a pass,
i.e., conditionally disjoint.

To address this problem, this research develops a
framework that involves: (1) digitally representing
the unstructured environment with multiple
characteristics, (2) incorporating multiple criteria in
the path planning process, and (3) planning multiple
conditionally disjoint paths across an unstructured
environment. We use the cell decomposition
method for environment representation [38]. Our
environment is discretized into a hexagonal grid.
The multi-criteria multi-agent path planning is done
using a penalty-based A* algorithm, which uses
environment properties like soil trafficability and
risk along with the distance in a multi-criteria cost
function. The cost criteria are weighted objectively
using the entropy weighting method.

The rest of the paper is outlined as follows:
a literature review of the state-of-the-art in
multi-criteria, multi-agent path planning and risk

representation approaches in path planning; followed
by a description of the multi-criteria, multi-agent
path planning problem; the methodology; and
lastly, there is a results and discussion section with
recommendations for further research.

2. LITERATURE REVIEW
2.1. Path planning

Finding the shortest path between two nodes
in a graph is a well-researched area. Dijkstra [1]
introduced an algorithm which could find the shortest
path between a source point and a target point on
a map by minimizing the cost to travel from the
start point to any other node, until the target point
is found. Hart et al. [2] introduced the A* algorithm,
which was able to do the same but much quicker
because of the use of a heuristic estimate of the
distance from a node to the target. These algorithms
led to other algorithms like D* [3], D* lite [4],
RRT [5], RRT* [6]. These algorithms are useful
when solving the path planning problem for a single
cost criterion (usually distance) in a simulated or
a highly structured environment. However, to be
used in an unstructured case, a path planner should
also consider the properties of the environment in a
multi-criteria cost function.

2.2. Multi-criteria path planning
There has also been a considerable amount

of work in multi-criteria path planning. For
off-road environments, a multi-criteria path planning
framework should consider terrain characteristics.
Cai et al. [34] propose a method to generate paths
by minimizing the localization uncertainty, collision
risk, and distance to the target. However, it fails
to incorporate terrain characteristics (slope and soil
property), which may result in paths that may not
be traversable. Similarly, Kurzer [27] and Shaikh
& Goodrich [30] also omit terrain characteristics.
Shen et al. [8] and Yu et. al. [9] consider vehicle
properties when generating smooth and traversable
paths, but they do not consider terrain characteristics.
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Roghanian & Kebira [31], Eklund et al. [32], and
Rosita et al. [33] use a multi-criteria Dijkstra’s
approach for path planning, and Zhao et al. [28]
use the Multi-Objective Evolutionary Algorithm
(MOEA). However, they present generalizations for
structured networks and have not been tested in
an unstructured environment. Braun [10] uses
an interesting approach to generate a single cost
measure by evaluating the actual cost to traverse a
link, which is then extrapolated to untraversed edges.
This method may not be optimal when considering an
environment with varying soil properties and slopes.
It also fails to provide an opportunity to prioritize one
cost criterion over others in the path planning phase.
Pandey et al. [11] and Mollan et al. [29] both use
terrain properties in conjunction with a physics-based
simulator to ensure path completion. However, these
methods only plan single paths.

2.3. Multi-agent path planning
Multi-agent path planning has also received some

attention. Dinic [12] proposes an algorithm for
finding totally disjoint paths in a network with
power estimation. Torrieri [13] proposes the same
for communication networks. Van der Zijpp et
al. [14] and Lawler [15] both propose a way to
determine a set of paths that satisfy a certain set of
constraints, but they require all the paths between the
start and target points to be determined beforehand.
Similarly, k-shortest path algorithms like that
proposed in Yen [16] and Eppstein [17] generate
a shortest path on a graph and then remove some
intermediate nodes from consideration for successive
path searches. All of the aforementioned multi-agent
path planning algorithms have limitations when it
comes to an environment where there are some
constraints (bridges, narrow pass, etc.) allowing
only one through access between the start and the
target, because removing from consideration the
intermediate nodes will prevent creation of any other
paths, and a single passage for access between
the start and the target does not allow disjoint

paths. Also, k-shortest paths algorithms require an
additional step at the end to check if the alternate
paths satisfy the specified constraints [23].

On the other hand, Silver [18] generates
collision-free paths for multiple agents from different
start points to target points by breaking down
the search into multiple single agent searches
considering time in discrete steps. Phillips and
Likhachev [19] introduce the concept of a safe
interval, i.e., a time period with no collision, to
plan paths for multiple agents. Sharon et al.
[20] also break down the multi-agent path planning
problem between different start and target points
into a series of single agent searches, and then
adds constraints to eliminate the conflicting paths.
Andreychuk et al. [21] use both safe interval
and conflict-resolution in continuous time. The
above papers deal with planning paths for agents
with different start and goal points while avoiding
collisions. Rouphail et al. [22] plans multiple
paths by increasing the length of the links in the
shortest paths. Pu et al. [23] extend this approach
by using Dijkstra’s algorithm with a logarithmic
edge-weight increment. Chen et al. [24] also
use a similar concept with increasing link weights
based on the reliability of the links in the shortest
path. Bell [25] generates a hyperpath between a
start and a target point in a way that compensates
for expected link delays. These multi-agent path
planning algorithms are catered to a more structured
environment with only one significant cost criteria.
Roy et al. [26] divide the planning into two phases,
a global plan based on distance, soil properties,
and risk which guides the local plan using Model
Predictive Control. This approach uses a single
global path to guide multiple vehicles by maintaining
a specific formation. However, it also exposes all the
vehicles to the same degree of risk. So, given the
imperfect nature of a priori information, it is more
desirable to produce multiple paths to overcome this
limitation.
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2.4. Risk in path planning
Different methods have been used to model risk

in path planning. Li et al. [35] and Cai et al.
[34] model risk as the probability of conflict with
the obstacles in the environment. Iwasa et al.
[36] propose to move along the path towards the
target while evaluating risk, based on the terrain
encountered, and then plan a risk-free return path.
Aoude et al. [37] model risk based on intention
prediction and threat assessment of other vehicles.
However, when planning paths for UGVs on an
unfamiliar unstructured terrain, not a lot is known
about risk in the environment. Therefore, a way
to evaluate and minimize risk based on the known
information is necessary. Roy et al. [26] consider
the risk of interaction with unfriendly agents and
model the area in the line of sight of enemy towers
as risky. The elevation data, and coordinates of the
enemy towers is used with the MATLAB “viewshed”
function to generate risk values. However, the
location of the unfriendly agents might not be
available or may be incorrect. Roy et al. [26] use
a binary risk representation, but the areas deemed
risky may need to be travelled anyway (in certain
circumstances) and the area deemed safe might have
some risk associated with it. So, a more robust
approach is required to evaluate and minimize risk
in unfamiliar, unstructured terrain.

Table 1 shows the gap in the literature. Thus,
a multi-agent, multi-criteria path planning algorithm
for an unstructured environment that includes terrain
properties in the path planning process and generates
distinct paths from a single start to a single target
point, which do not expose all the agents to the same
risk, is required. These paths should not converge
unless constrained by some environmental features
(bridges, narrow pass, etc.).

3. PROBLEM DESCRIPTION
We have an unstructured off-road environment,

where an agent can move to any position (x,y) as
long as it is traversable. To simplify the problem,

it has been discretized into a hexagonal grid. The
properties associated with the environment (obstacle,
elevation, soil trafficability, risk) are mapped to
the centroids of each of these hexagons(nodes).
Furthermore, an agent moves from the centroid
of one hexagon H(xi, yi) to the centroid of an
adjacent hexagon H(xj, yj), i.e., from a node to
a neighboring node. Distance between any two
adjacent hexagons is the centroid distance (CD).
Thus, a series of hexagons have to be traversed
in order to move from the depot to a target point
in the environment. Each hexagon has a distinct
node id (Hi) associated with it. Therefore, the
environment can be represented as a set of nodes (N=
[H1, H2, ....Hi]), with the environment properties
(H(xi, yi, Obstaclei, Elevationi, SoilT rafficabilityi,
Riski)) associated with them. We need to plan | P |
paths (P = [Path1, Path2, ...Path|P |]) for | P |
agents. Each path (k) can be represented by a series
of hexagons ([Hstart, Hk1, Hk2, ....Htarget]). These
paths should be distinct from one another, so that not
all paths are exposed to the same risk. However, they
also should have the ability to crossover or intersect
in the presence of terrain constraints like a bridge or
a narrow pass. The choice of the next node on a path
is informed with the help of the multi-criteria cost
function.

cij = Σa(wa ∗X ij
a ) (1)

Where cij is the cost of travelling from node i to
node j, X ij

a is the value of normalized cost parameter
a (distance, soil trafficability, or risk), and wa is the
value of weight assigned to the cost parameter a.

4. METHODOLOGY
The proposed multi-criteria, multi-agent path

planning framework involves: first, discretizing
the environment and generating the planning data,
which contains the information about the planning
environment including the values for the cost criteria
across the environment. Second, using the planning
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Table 1: Path planning literature.

Literature Multi- Terrain Unstructured Multi- 1 Start to Distinct Environment
Criteria Properties Environment Agent 1 Target Paths Constraints

[27],[34],[30] Y N - N - - -
[8],[9] Y N - N - - -
[7] Y Y - N - - -
[31]-[33],[28] Y - N N - - -
[11],[29] Y Y Y N - - -
[12]-[17] N - - Y Y Y N
[18]-[21] N - N Y N - -
[22]-[25] N - N Y Y Y -
[26] Y Y Y N Y N Y
This Paper Y Y Y Y Y Y Y

data to perform multi-criteria, multi-agent path
planning using a penalty-based A* algorithm with
a multi-criteria cost function weighted using the
entropy method. Therefore, the proposed framework
can broadly be divided into two stages as follows.

4.1. Preprocessing
In this stage, the information about the planning

environment is used to generate data, which is later
used in the path planning stage. The subtasks in the
preprocessing stage are: environment representation,
risk determination, and planning data generation

a. Environment representation: Barring the
non-traversable regions (e.g., water bodies) the
whole planning environment can be considered as a
pathway, i.e. usable by a moving vehicle. Therefore,
the planning environment should be represented in a
manner that is able to capture this complexity.

Geisbrecht [38] outlines some popular methods
of map representation: cell decomposition and
roadmaps. Cell decomposition lays out a grid of
a specified shape and size over the planning area,
where the center of each grid unit becomes a node
in the search graph [38]. Similarly, in the roadmap
approach, points are randomly selected from the
planning area and are interconnected to form the
roadmap [38]. However, because of the abundance

of traversable area in the off-road environment,
roadmap approaches may leave out significant
portions of traversable area, which can then lead to
inaccessibility of certain areas or may result in longer
paths because of limited connectivity. Moreover,
these approaches are inefficient for confined sectors
of the map (e.g., narrow pass or bridge) because of
the low probability of including a point from such
areas in the roadmap [38]. On the other hand, the cell
decomposition method is flexible with its cell sizes,
which can be fine-tuned to reduce the number of cells
(e.g., to increase the execution speed) or increase
the detail [38]. Therefore, we have chosen the
cell decomposition method to represent our planning
environment.

The planning area is represented in the form
of a hexagonal grid, where the centroids of the
hexagon represent the nodes and each centroid is
connected to its six neighbors by links. Hexagons
are preferred over rectangles when considering
aspects like connectivity or movement paths [46].
Similarly, Quijano and Garrido [47] have shown
that when the planning environment is large and
the exploration algorithm is not very efficient, the
hexagonal representation was shown to perform
better than quadrangular grids.

The discretization of the environment was done
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in a GIS platform (ArcGIS pro version 3.0.3, [48]).
Each hexagon represents the properties of the area it
covers and these properties are associated with the
centroid of the hexagon.

b. Risk determination: Depending upon the
sensitivity of the overall mission, stealth can be an
important consideration while moving in unfamiliar
off-road environments. While planning paths in
such environments, one of the cost criteria in the
proposed framework is risk, which is modelled as
the likelihood of being visible to adversaries. So,
a node visible from most of the planning area is
the most risky node and vice versa. Carver and
Washtell [43] proposed a voxel-based algorithm,
which can perform view shed estimation rapidly
without significant loss of accuracy [43]. We used
their algorithm packaged in MATLAB’s “viewshed”
function [44] for risk determination. Risk estimation
was done in two steps: (1) determining the risk of
visibility across the map, and (2) determining the
visibility from enemy locations. In the first step,
the nodes of the hexagonal grid are used as the
observer locations. Using the coordinates of the
nodes and the Digital Elevation Model (DEM) of
the environment, visibility across the environment
from all the nodes are determined and aggregated
for each cell of the DEM. The most exposed cell
will have the highest value and the least exposed cell
will have the lowest value. The aggregated values
are then normalized to get a range of visibility risk
values between ‘0’ and ‘1’ for each cell. For the
second step, the known location of the enemy is used
as the observer location and the enemy viewshed is
determined, which indicates the areas to be avoided
during the path planning stage.

c. Planning data generation: The cost criteria
used for path planning are distance, soil trafficability,
and risk. The primary concerns when moving in
an unfamiliar off-road environment are speed, safety,
and stealth [30]. Therefore, distance is used as a cost
criteria to ensure shortest paths, soil trafficability is
used to ensure safe and traversable areas along the

path, and risk is used to ensure minimum exposure
when moving along the path (stealth is a future
research direction at this time). To estimate the cost
criteria values, elevation, soil trafficability, and risk
are used as information layers. Soil trafficability
is the capacity of soils to support military vehicles
[40]. It is determined based on the soil strength,
stickiness, slope, slipperiness, and effects of weather
[40]. Based on the trafficability ratings, military
vehicles are classified into seven classes. Soil
trafficability for a vehicle class is a qualitative
representation of the soil’s ability to allow vehicles
of that class to pass over it. These ratings vary
based on season (wet or dry) and number of passes.
The “Planning and Design of Roads, Airfields,
and Heliports in the Theater of Operations–Road
Design” [40], jointly published by the U.S Army
and U.S. Air Force, provides a scale to convert
the qualitative trafficability ratings to a quantitative
scale indicating the probability of traversing the area
(Table 2). The middle values of the probability
ranges were chosen for each qualitative rating. Soil
trafficability ratings were obtained from the web soil
survey database maintained by the USDA National
Resources Conservation Service [45].

Table 2: Soil trafficability ratings and corresponding
probability of traversing the area. [40]

Soil trafficability Probability of
rating traversing the area
Excellent 90% - 100%
Good 75% - 90%
Fair 50% - 75%
Poor 0% - 50%

The elevation and risk information are imported
to GIS in the form of rasters, whereas soil
trafficability and obstacle information are imported
in the form of vector polygons. The elevation of
a node in the hexagonal grid is the elevation at the
centroid of the respective hexagon. Similarly, the risk
of visibility is also averaged across the hexagon and
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assigned to the respective centroid. Centroids of all
the hexagons that are over the obstacles are classified
as obstacles. The hexagons visible from the enemy
location are treated as obstacles to be avoided. The
planning is done for a point object, so to account
for that, centroids (nodes) in the grid which are at a
distance equal to the vehicle length from obstacles
are also classified as obstacles. Soil trafficability
values are averaged for the area covered by a hexagon
and assigned to the respective node.

After the planning criteria are assigned to each
node of the hexagonal grid, the attribute table of the
loaded hexagonal grid is extracted and used for the
multi-criteria, multi-agent path planning.

4.2. Multi-Criteria Multi-Agent Path Planning
In this stage, the planning data generated in the

preprocessing stage is used to plan paths for multiple
agents. The subtasks in this stage are multi-criteria
weighting and multi-agent path planning.

a. Multi-criteria weighting: Graph-based
planners generate paths for point objects by
optimizing the distance between start and the target
nodes, but those paths have to actually be traversable
by a vehicle for them to be usable. The traversability
of a path depends upon the terrain it moves
along, the vehicle moving along that path, the soil
properties across the environment, etc. The proposed
framework considers the soil trafficability and risk
information. It also uses terrain properties like
longitudinal and lateral slopes to rule out neighbors
located at infeasible slopes. The environment
properties (risk and soil trafficability) and distance
are incorporated into a multi-criteria cost function
of the planning framework. The different criteria
are normalized and weighted using the entropy
weighting method.

Entropy weighting is an objective weighting
method, which assigns weights based on the
uncertainty represented by a discrete probability
distribution of the cost criteria [41]. It weights a
criteria more if it is more important in the decision

making process, i.e., its values are distributed more
across different neighboring nodes [34]. Using this
approach produces a different set of weights for each
step of the search, which ensures that at each step the
more critical criteria is weighted more.

If there are m neighbors and | a | cost function
attributes, the probabilities for the attributes (Yij) are
[34]:

Yij =
Xij

Σm
i=1Xij

, jϵ[1, |a|] (2)

The entropy value for cost function attribute j (ej)
is calculated as [42]:

ej = − 1

ln(m)
Σm

i=1Yij ∗ ln(Yij), jϵ[1, |a|] (3)

And the corresponding weights are determined as
[42]:

wj =
1− ej

Σ
|a|
j=1(1− ej)

, jϵ[1, |a|] (4)

b. Multi-agent path planning: The
proposed framework plans multiple paths across
the environment, that are conditionally disjoint
using a penalty-based A* algorithm [2],[24]. The
penalty-based A* algorithm uses the planning
data generated in the preprocessing step as the
environment data and the planning criteria data. The
first path is generated using the A* star algorithm
[2] with a multi-criteria cost function. All the nodes
present in any previous path are penalized during the
search of the next path, and a penalty value is added
to the multi-criteria cost function of the penalized
node and its neighbors. This further diverges the
search and generates paths that are distinct from the
previously generated paths. This process is repeated
until the desired number of paths is generated.

The cost criteria (distance, risk, and soil
trafficability) are normalized and used in a weighted
multi-criteria cost function. The normalized value
(X ij

a ) of a parameter (Zij
a ) for cost attribute a is

determined as:

Multi-Criteria Multi-Agent Path Planning In Unstructured Off-Road Environments, Khatiwada, et al.

Page 7 of 15



Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

X ij
a =

Zij
a − Za,min

Za,max − Za,min

(5)

Where Za,min and Za,max are the minimum and
maximum feasible values of the cost parameter a.

The heuristic aspect of the cost to be
used alongside the multi-criteria cost should
underestimate the cost to reach the target node (t)
[2]. Therefore, for each successor, the heuristic value
is calculated to be the ratio of ‘the distance between
the node and the target’ to ‘the sum of the distance
between all available successors and the target’.

hj =
Distance(j, t)

ΣjDistance(j, t)
(6)

The normalized cost parameters, for each
neighboring node, are then supplied with appropriate
weights (wa) to determine the weighted cost of
moving from current node i to a neighbor node j. The
multi-attribute weighted cost (cij) of traveling from
node i to node j is determined as:

cij = Σa(wa ∗X ij
a ) (7)

gj = gi + cij (8)

fj = gj + hj + q (9)

Wheregi and gj are the weighted costs to travel
from start node (s) to nodes i and j, respectively. The
f-cost (fj) of node j is the sum of g-cost (gj) and
h-cost (hj) for node j and a penalty q. The penalty
is 0 if a neighboring node was not used in a previous
path or is not an immediate neighbor of a node used
in a previously planned path.

5. RESULTS AND DISCUSSION
The proposed multi-criteria, multi-agent path

planning framework was implemented on a terrain
map. An off-road environment near Elmore County,
Idaho was chosen. The test terrain had no formal

road network. It had elevation variations, soil
trafficability variations, and obstacles in the form of
water bodies. The selected test area was about 46,000
sq meters, of which a Digital Elevation Model was
obtained from the U.S. Geological Survey’s website
[49]. An arbitrary location on the map was chosen as
the enemy location, shown by a blue pin in Figures
2 through 11. The study area was discretized into a
hexagonal grid (Fig 1) with each hexagon of 5000
sq meters area. This yielded a centroid distance
of 75.98 meters between adjacent hexagons. The
information layers for the environment are shown in
Fig. 2 through Fig. 6 (underlying map source is
[50]).

Figure 1: Hexagonal grid representation (zoomed in).

Figure 2: Test terrain extent.
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Figure 3: Elevation layer.

Due to the nature of the environment and the grid,
distance was mostly uniform across neighboring
hexagons. There was variation in soil trafficability,
but risk had the most variation of the three cost
parameters, across neighboring hexagons. These
characteristics could result in long winding paths,
which mostly optimized risk and soil trafficability.
To ensure distance is also optimized along with soil
trafficability and risk, a value of 1 (subjective bias)
was added to the weights generated by the entropy
method for the distance criteria.

Figure 4: Risk Layer.

The penalty value should be chosen such that
the search diverges from the original set of nodes.
Thus, a factor of the estimate of the cost between
any two neighboring hexagons is representative of
the penalty. For this test, a penalty of 6 was chosen,
any node present in a previously planned path was
penalized. On top of that, immediate neighbors of a

penalized node were also penalized to cause further
distinction of the paths.

Figure 5: Soil trafficability layer.

The resulting paths are shown in Figures 7
through 11. The magenta path is the first path and
the blue path is the second, generated using the
penalty mechanism. The total path length, average
risk per node, and average soil trafficability per node
are compared for the two paths generated by the
multi-criteria, multi-agent path planner (MCMAPP),
against the paths generated by optimizing each of the
cost criteria and the plots are shown in Figures 12
through 14.

Figure 6: Enemy viewshed.

The paths generated by MCMAPP perform better
than all other planning strategies except the optimal
one, for soil trafficability and for risk. The path
length for the first MCMAPP path is the highest of all
the paths generated. For the second MCMAPP path,
the length is close to the optimal path length. The risk
per node for the first path planned by the MCMAPP

Multi-Criteria Multi-Agent Path Planning In Unstructured Off-Road Environments, Khatiwada, et al.
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is lowest, lower than the risk per node for the optimal
risk planning strategy. This is because the optimal
risk planning strategy minimizes the cumulative risk
along the path. The cumulative risk is therefore
lowest for the optimal risk planning strategy, but the
first MCMAPP path does better when it comes to
average exposure to risk along the path. As for the
average soil trafficability, the MCMAPP paths have
high average soil trafficabilities per nodes, and are
only bested by the optimal soil trafficability path.

Figure 7: Results on test terrain extent.

Figure 8: Results on elevation layer.

Figure 9: Results on risk Layer.

Figure 10: Results on soil trafficability layer.

Figure 11: Results with enemy viewshed.
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Figure 12: Comparing path length.

Figure 13: Comparing average risk per node.

Figure 14: Comparing average soil trafficability.

6. CONCLUSION AND FUTURE DIRECTIONS
The proposed framework plans paths for

multiple UGVs traversing in unstructured off-road

environments. It incorporates the environment
properties to ensure safe paths. Such a framework
can help in routing unmanned vehicles in off-road
environments for humanitarian relief after natural
disasters, transporting supplies to off-road locations,
etc. Using UGVs for these missions can decrease the
risk to human drivers that are otherwise involved in
such missions. It can also supplement a low-level
local planner by providing a set of waypoints to
help keep a UGV on track towards the target. A
significant limitation of our framework is that the
run time significantly increases as the environment
becomes larger. However, this framework is meant
to be run before the mission to provide waypoints
before the UGVs leave their starting location. The
second limitation is that the proposed framework
does not consider vehicle properties, yet.

A penalty is being used to generate multiple
paths, this introduces an additional parameter that
needs to be tuned to generate desirable paths. Using
this approach comes with its pros and cons. The
advantage being, the value of penalty and the penalty
assignment mechanism can be tuned to generate
paths that are desirable to the operator. However,
a disadvantage is the fact that the operator needs to
have some information about the multi-criteria cost
to generate good estimates of the penalty.

The proposed MCMAPP assumes that the input
environment information is perfect, and plans paths
based on that information. However, in reality
the a priori data may not reflect the changes
that may have occured in the real environment.
This limitation, however, could be addressed by
replanning as needed. Imperfect information could
also be addressed by adding another attribute such
as “information reliability” or a “trust value” to
the routing considerations. The proper way to
integrate this attribute with the other elements
requires additional research into whether it is an
independent attribute or needs to be combined with
the other data elements (e.g., multiplicatively).

Incorporating vehicle properties in the
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multi-criteria path planning framework is the next
step for this research. In addition, using travel
time as a cost criterion instead of distance could
potentially eliminate the need to add subjective
bias to the weights. Furthermore, this work can
be expanded by implementing a fast-replanning
capability, so that the original plan can be updated
to accommodate any discrepancy in the environment
identified during the mission or for situations when
the vehicle significantly deviates from the original
plan.
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